
Econometrics Midterm Concepts

Ryan Safner

ECON 480

Ordinary Least Squares (OLS) Regression

• Bivariate data and associations between variables (e.g. X and Y )

– Apparent relationships are best viewed by looking at a scatterplot

∗ Check for associations to be positive/negative, weak/strong, linear/nonlinear, etc

∗ Y : dependent variable

∗ X: independent variable

– Correlation coefficient (r) can quantify the strength of an association
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sY

)
=

n∑
ZXZY

n− 1

∗ −1 ≤ r ≤ 1 and r only measures linear associations

∗ |r| closer to 1 imply stronger correlation (near a perfect straight line)

∗ Correlation does not imply causation! Might be confounding or lurking variables (e.g. Z)
affecting X and/or Y

• Population regression model
Yi = β0 + β1Xi + ui

– β1: ∆Y
∆X : the slope between X and Y , number of units of Y from a 1 unit change in X

– β0 is the Y -intercept: literally, value of Y when X = 0

– ui is the error or residual, difference between actual value of Y |X vs. predicted value of Ŷ

• Ordinary Least Squares (OLS) regression model

Ŷi = β̂0 + β̂1Xi

– Least square estimators β̂0 and β̂1 estimate population regression line from sample data

– Minimize sum of squared errors (SSE) min

n∑
u2
i where ui = Yi − Ŷi

– OLS regression line
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β̂0 = Ȳ − β̂1X̄
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Ŷ = β0 + β1X

1

β1

Yi

Xi

Ŷi
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• Measures of Fit

– R2: fraction of total variation on Y explained by variation in X according to model

R2 =
ESS

TSS

R2 = 1− SSE

TSS

R2 = r2
X,Y
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– Standard error of the regression (SER): average size of ui, average distance from regression line
to data points
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∑
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• Hypothesis testing of β1

– H0 : β1 = β1,0, often H0 : β1 = 0

– Two sided alternative H1 : β1 6= 0

– One sided alternatives H1 : β1 > 0, H2 : β1 < 0

– t-statistic

t =
β̂1 − β1,0

SE[β̂1]

– Compare t against critical value t*, or compute p-value as usual

– Confidence intervals (95%): β̂1 ± 1.96(SE[β̂1])

β1

Small variance

Large variance

β̂1

β̂1 is a random variable, so it has its own sampling distribution with mean E[β̂1] and standard error se[β̂1]

• Mean of OLS estimator β̂1 & Bias: Endogeneity & Exogeneity

– X is exogenous if it is not correlated with the error term

corr(X,u) = 0

∗ Equivalently, knowing X should not give you any information about u:

E[u|X] = 0

∗ If X is exogenous, OLS estimate on X is unbiased:

E[β̂1] = β1
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– X is endogenous if it is correlated with the error term

corr(X,u) 6= 0

∗ Equivalently, knowing X gives you information about u:

E[u|X] 6= 0

∗ If X is endogenous, OLS estimate on X is biased:

E[β̂1] = β1 + corr(X,u)
σu
σX

· Can measure strength and direction (+ or −) of bias

· Note: if unbiased, corr(X,u) = 0, so E[β̂1] = β1

• Variance of OLS estimator β̂1, measuring precision of estimate

var[β̂1] =
σ̂2

n× var(X)

and standard error

se[β̂1] =

√
σ̂2

n× var(X)

– Affected by 3 major factors:

1. Model fit, where SER=σ̂

2. Sample size n

3. Variation in Xj

• Heteroskedasticity and homoskedasticity

– Homoskedastic errors (u) have the same variance over all values of X

– Heteroskedastic errors (u) have different variance over values of X

∗ Heteroskedasticity does not bias our estimates, but incorrectly lowers variance & standard
errors (inflating t-statistics and significance!)

∗ Can correct for heteroskedasticity by using robust standard errors
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